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ABSTRACT

A successful failure investigation of a four-bar linkage deployment

mechanism has been performed. Possible failure causes such as the

mismatch of material coefficient of thermal expansion (CTE), excessive

hinge friction, limit switch interference, and thermal-gradient-induced

resistive preload were investigated and are discussed. The final
conclusions and corrective actions taken are described. Finally, valuable

lessons learned during the investigation are discussed.

INTRODUCTION

Four-bar linkages have been used extensively in aerospace

mechanisms to transmit torque, motion, and power, and/or to transform

one type of motion or force to another (e.g. linear to rotary). The

popularity of four-bar mechanisms among aerospace mechanism

designers is due to their unique characteristics including (1) the rapid

increase in their effective gear ratio (mechanical advantage) as the

linkage approaches the top-dead-center toggle position and (2) the

ability of a four-bar linkage to provide positive lock-up at the end of

travel without the increased resistive torque associated with latching

mechanisms.

The work described in this paper was performed in response to a

functional failure of a panel deployment system which employs a set of

eight four-bar linkages to transmit torque and to provide positive lock-

up at the end-of-travel (Figures 1 and 2). During a gravity off-loaded

cold thermal-vacuum deployment test,, three of the four outboard hinge

four-bar linkages failed to lock-up into their over-center position after

the panel had fully deployed. Review of high-speed film showed that

the input (drive) links of the three outboard four-bar linkages that had

failed had come within approximately 5 to 10 degrees of their top-

dead-center positions (see Figure 3). After the test, as the chamber
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temperature was increased, each of the four-bar mechanisms that had
failed to lock-up at -100°C moved into their over-center positions by
the time the chamber temperature had reached 0°C - 5°C. The four
inboard hinge four-bar linkages, which had functioned properly during
the cold thermal-vacuum deployment test and are of a different design
than the outboard linkages, are not discussed in this paper.

MECHANISM DESCRIPTION

The panel deployment system is made up of a set of four spring-

driven four-bar linkages that were designed to provide a redundant

deployment system for a two-panel configuration (see Figure 1). There

are two inboard and two outboard hinges. Each hinge has two four-bar

linkage mechanisms which provide redundant drive torque sources.

The individual spring-driven four-bar mechanism of the outboard hinge

consists of a helical torsion spring, a monoball main hinge bearing, and a

four-bar linkage. The outboard four-bar linkage is formed by a drive

(input) link, a turnbuckle link, and the structural frame of the inboard

and outboard panels (see Figure 2). The driving or input torque of the

torsion spring is applied to the input link and is transmitted through the

linkage to the main (output) hinge. The output torque about the main

hinge causes the outboard panel to rotate 180 ° with respect to the

inboard panel, from its stowed position to its deployed position.

The four-bar linkage is designed so that it reaches its top-dead-

center position when the outboard panel has fully rotated (deployed)

from the inboard panel. As the linkage moves beyond it top-dead-

center position the input link hits the input link stop which arrests the

deployment. The high mechanical advantage of the input link just

beyond the top-dead-center position prevents any back-driving of the

input link. In addition, there is a hard stop between the inboard and

outboard panels that (1) helps absorb the lock-up load forces and (2)

provides a bearing surface between the inboard and outboard panels

through which a "locking" preload is applied to eliminate any backlash

in the joint after deployment (see Figure 2).

During assembly, the inboard and outboard panels are aligned to

each other (coplanar in their deployed configuration) by adjusting the

hard stop between the inboard and outboard panels. The next

adjustment involves setting the over-center distance of the four-bar

linkage (see Figure 4). This adjustment is performed by adjusting the

input link stop. The over-center distance is set nominally to 0.762 mm
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(0.030 inch). Finally, the four-bar linkage turnbuckle is adjusted such
that the mechanism preloads the outboard panel into the inboard panel
in order to eliminate hinge backlash while still being able to travel
over-center and lock-up.

INITIAL FAILURE INVESTIGATION

Initially, the failure investigation focused on the most probable

causes which included (1) possible mismatch of the linkage material's

coefficient of thermal expansion which could cause binding in the

mechanism pivots, (2) possible excessive hinge friction torque of a

monoball bearing which had caused a deployment failure in a previous

cold deployment test, or (3) excessive actuation force produced from

mechanically actuated limit switches which are used to verify four-bar

over-center motion.

CTE Mismatch

An initial review of the linkage design revealed that the material

of the linkage pins was different than that of the linkage itself. Because

of the difference in their CTEs, suspicion arose that interference

between the linkage and the pivot pins had caused the mechanism to

seize. However, the possible mismatch of the linkage material's CTE was

eliminated as a failure cause after a review of the design showed that

the clearance between the linkage pins and links was more than

sufficient for the temperature range of the test. The analysis included

the differential expansion of the pins and links due to their different

material CTE, worst-case cold bulk temperature change and

temperature gradients between the pin and link. In addition, analysis

of the friction torque that would be present if the pin-link interference

did occur, showed that the maximum possible level of linkage hinge

friction (0.2 N-m) was well below the drive capabilities of the input

torsion spring after having been transmitted through the four-bar

linkage (>5 N-m).
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Excessive Hinge Friction

In an earlier deployment test of the panel, the main hinge

monoball bearing had caused a deployment failure of the panel. Very

high monoball friction, caused by the differential growth of the steel

monoball and its aluminum housing, had caused the deployment motion

of the panel to stop (at approximately 120 °) before it reached its

deployed position (180 °) during cold temperature deployment. As a

result, the monoball bearing was immediately suspected as the cause of

the recent failure. However, after reviewing high-speed camera data of

the deployment, the possibility that excessive monoball bearing torque

had caused the failure was eliminated. The camera data clearly showed

that the panel deployment motion proceeded in a normal fashion and

within the expected deployment time, which proved that the hinge

friction torque was no greater than in prior successful deployments. In

addition, the monoball bearing design flaw t that had caused the

previous deployment failure had since been corrected.

Limit Switch Resistive Force

To verify four-bar mechanism lock-up, a limit switch had been

incorporated into the mechanism design. When the linkage moves

over-center, the input link actuates the spring-loaded limit switch (see

Figure 4). The resistive spring force applied to the input link from the

limit switch is not insignificant and, as a result, during assembly, special

care is taken to properly adjust the limit switch so that it does not

interfere with the over-center motion of the linkage. Because the panel

deployment failure involved the failure of the four-bar linkage to move

over-center, a possible misadjustment of the limit switches was

suspected as the cause of the failure. However, the limit switch

actuation force was disproved as the cause of the failure when an

additional cold vacuum deployment test, with the limit switches

adjusted so as to minimize the limit switch resistive spring force, also

failed. In addition, the limit switch resistive spring torque (<0.1 N),

measured after the limit switches were readjusted, was much less than

the measured deployment spring force 2 (>3.0 N) and, therefore, would

1 Epoxy that was applied to the threads on the exterior surface of the bearing
outer race acted as a shim when exposed to cold thermal vacuum testing and
caused the bearing to bind.

2 The limit switch resistive torque and the available spring torque were measured
about the input link pivot axis.

286



not be large enough to prevent over-center motion of the four-bar
linkage.

DETAILED FAILURE INVESTIGATION

With the most probable failure causes eliminated, the

investigation focused on the conditions of this test that might make it

different from previous successful cold thermal vacuum tests. The

investigation focused on what mechanism assembly adjustments were

performed and how the cold thermal vacuum environment could affect

the mechanism's behavior.

Linkage Kinematics

During assembly, the linkage is adjusted such that the hinge line

of the panel is preloaded against a hard stop in its deployed position to

prevent relative motion of the inboard and outboard panels (see Figure

4). As the linkage approaches the top-dead-center position, the hard

stop on the outboard panel is preloaded against the end of the inboard

panel by the spring force. The preload reaches a maximum at the

linkage top-dead-center position. As the four-bar continues past top-
dead-center to its final over-center position, the outboard panel backs

away from the inboard panel because of the rocker-crank kinematic

property of the four-bar mechanism [1], and the preload in the hard

stop is reduced (see Figures 5 and 6). It is the reduced preload in the

over-center position that prevents relative motion between the inboard

and outboard panels. The assembly adjustment instructions require

that the preload be adjusted such the outboard panel is securely

preloaded against the inboard panel while still allowing the input link to

be driven over-center by the deployment spring. As a result, the level

of the preload force is not measured and is set purely by feel.

Effect of Linkage Thermal Gradients

During the cold thermal-vacuum test, the orientation of the cold
wall in the thermal vacuum chamber creates a non-uniform

temperature distribution in the four-bar mechanism links and

surrounding hardware. The total gradient across the mechanism was

approximately 10°C which was measured during the cold deployment

test. The change in the four-bar geometry, brought on by the

differential thermal expansion of the mechanism, modified the

kinematic properties of the linkage such that the outboard hard-stop
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prematurely preloaded against the inboard panel (see Figure 7). As a
result, an extremely high resistive torque develops as the four-bar
mechanism approaches top-dead-center. The magnitude of this
resistive torque is dependent upon the temperature gradient created as
well as the stop stiffness of the four-bar mechanism. The stop stiffness
depends on the instantaneous geometry of the linkage, the local
stiffness of the mechanism links and pins, and the stiffness of the
preload hard stop (see Figure 8). Note that the relative change in link
lengths due to their differential thermal expansion is very small (0.011
mm for a 10° C gradient) while the corresponding change in resistive
torque can be very high (> 30 N-m).

The resistive torque developed by the hard stop preload for
various levels of linkage temperature gradient and the available input
spring torque are shown in Figure 9. The torques in Figure 9 are
measured about the main hinge of the panel and are plotted vs the
input link angle as measured from the top-dead-center position. The
torques are plotted vs the input link angle so as to increase the
resolution of the torque calculations very close to the top-dead-center
position. Note that the resistive torques developed are a direct result of
the temperature gradient across the linkage, not as a result of a gross

temperature change of the linkage which would not cause a change in

the kinematic properties of the linkage. Figure 9 clearly shows that a

temperature gradient of 10°C or greater could create a resistive torque

which exceeds the available torque of the input spring.

Effect of Linkage Adjustments

During assembly, the linkage is adjusted such that the hinge line

of the panel is preloaded against a hard stop in its deployed position to

prevent relative motion of the inboard and outboard panels. The

turnbuckle link is adjusted such that the spring force of the input link is

capable of pushing the input link to its over-center position while

maintaining the preload of the outboard to inboard panels. The preload

developed is at a maximum at the top-dead-center position. As the

linkage travels to its over-center position, the outboard hard stop backs

away from the inboard panel and relaxes the preload. The amount of

relaxation depends upon the over-center distance adjustment which is

determined by the adjustment of the link stop (see Figure 2).

Because of the difficulty of taking measurements at the exact top-

dead-center position of the linkage, the adjustments described below

are performed as the linkage is in its over-center position. As a result,
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the measurable adjustment parameters include the linkage over-center
distance and the gap between the hard stop on the outboard panel and
inboard panel while the linkage is in its over-center position (see Figure
4). Both parameters affect the maximum level of hard stop preload
which occurs at the linkage top-dead-center position.

The resistive torque developed by the hard-stop preload for
various levels of hard stop gap and linkage over-center distance are
shown in Figures 10 and 11, respectively. Figure 10 shows that as the
hard stop gap is decreased, as measured in the over-center position, the
maximum resistive torque developed at the top-dead-center position
increases. In addition, Figure 11 shows that as the over-center distance
is increased, as measured in the over-center position, the maximum
resistive torque developed at the top-dead-center position increases. In
fact, for a measured hard stop gap of less than 0.0025 mm (0.0001 inch)
or for a measured over-center distance of greater than 1.143 mm
(0.045 inch) the resistive torque exceeds the available torque of the
input spring.

Affect on Torque Margin and Mechanism Function

Additionally, factors such as linkage-to-pin backlash and pin

friction torques significantly contribute to the resistive torque as the

linkage approaches top-dead-center. The sum of these resistive

torques, created by and/or significantly increased by the effects of

differential thermal expansion, can exceed the available torque from the

torsion input spring and cause a negative torque margin 3 condition

which could prevent over-center lock-up of the four-bar linkage.

Figure 12 shows the minimum torque margin for various levels of

linkage temperature gradient and hard stop gap. The over-center
distance was set at its nominal 0.76 mm (0.03 inch) distance for Figure

12. Torque margin calculations of less than 0% indicate that the linkage

will fail to move over-center and lock-up.

During the panel deployment lock-up failure, the total gradient

across the mechanism was measured at approximately 10°C. The hard

stop gap distance, measured in the over-center position, ranged from

0.000 mm (0.000 inch) to 0.0254 mm (0.001 inch) while the over-

center distance was set precisely at 0.760 mm (0.030 inch). Figure 12

3 Torque margin is defined as the quotient of the quasi-static available torque to
resistive torque minus 1.0.
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clearly shows that the conditions described above would cause the
panel deployment mechanism to fail.

CORRECTIVE ACTIONS AND SUBSEQUENT TESTING

In order to eliminate the cause of the failure, the preload

requirement between the inboard and outboard panels had to be

relaxed. In fact, discussions with experienced technicians revealed that

during previous testing the linkage was adjusted with some hinge line

backlash. The technicians had observed that the mechanism performed

correctly when some backlash in the hinge was allowed. These previous

units had all successfully passed their thermal vacuum deployment

tests. This would explain why previous cold thermal vacuum tests of an

identical mechanism were successful. However, relaxing or eliminating

this requirement created additional concerns about backlash along the

hinge line of the panel and how this might possibly interact with other

system elements. The final solution involved modifying the four-bar

mechanism adjustment and preload procedure such as to minimize the

panel hinge line backlash while guaranteeing positive over-center lock-

up for the worst-case thermal environment.

The new procedure specified that the turnbuckle linkage would be

adjusted such that a 0.254 mm (0.01 inch) gap would exist between the

hard stop of the outboard and inboard panels. In addition, the over-

center distance of the linkage is to be adjusted to 0.760 mm (0.030

inch) or less. These adjustments would guarantee positive over-center

lock-up for a worst-case temperature gradient of 55°C (100°F).

Following the implementation of the modifications discussed above,

there were three subsequent deployment tests, two in a cold vacuum
and one at ambient. All three tests were 100% successful.

CONCLUSION

A successful failure investigation of a four-bar linkage

deployment mechanism was performed. Possible failure causes such as

the mismatch of material CTEs, excessive hinge friction, or limit switch

interference were investigated and discarded. Further investigation

revealed that thermal gradients across the linkage caused the outboard

panel hard stop to prematurely preload against the inboard panel,

which caused the resistive torques to exceed the available torque.

Corrective adjustment procedures were implemented to minimize the
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panel hinge line backlash while guaranteeing positive over-center lock-
up for worst-case thermal environment. Three subsequent deployment
tests, two in a cold vacuum and one at ambient, have been successful.

Finally, the important "lessons learned" during our experience in
this failure investigation include:

(1) Do not ignore resistive torque contributions close to the

top-dead-center position: Mechanism designers often do not engage

in a thorough analysis of the potential resistive torques that occur near

the top-dead-center position because the analysis of a four-bar linkage
is difficult and because of the presumption of near-infinite torque

transmission. In fact, the large increase in resistive torque (>30 N-m),

due to very small change in the four-bar linkage geometry (~0.01 mm
relative length change), occurred as a result of the same kinematic

properties that make a four-bar linkage attractive to mechanism

designers. The major system-level thermal-vacuum test failure
described in this report might have been avoided if a complete analysis

had been performed beforehand.

(2) Importance of thermal gradient and direction of

gradient: Thermal design considerations usually take into
consideration only bulk temperature changes, which are important in
the case of material CTE differences. However, because the kinematic

properties of a four-bar linkage are dependent upon the ratio of link

lengths and not on the absolute link lengths, the relative link
temperatures are the determining factor. Mechanism designers should

note that serious problems can arise in the presence of relatively small

temperature gradients, as was the case in the test failure described in

this report.
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